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The four-center integral of 7,5~ with Slater-type atomic orbitals is evaluated analytically. The Fourier-
transform convolution theorem is used to express the integral as an infinite sum in which the internuclear
angles appear in spherical harmonics, and the internuclear distances in integrals over spherical Bessel
functions and exponential-type integrals. These “radial” integrals are evaluated as convergent infinite
expansions by contour integration techniques. The formulas are valid for general values of the #, I, m, ¢
parameters of the orbitals and for general nonzero values of the internuclear distance vectors.

L. INTRODUCTION

Analytical formulas for the four-center integral of
r27! with Slater-type atomic orbitals are derived by
Fourier transform methods. The approach is similar
to that of Papers I-III of this series,’ to which the
reader is referred for much of the detail. The Fourier-
transform approach, and the resulting formulas, differ
considerably from the Taylor-series approach of
Paper IV.# The Taylor series method is much easier to
grapple with analytically, but it yields inflexible,
slowly convergent formulas. The Fourier transform
technique is more complicated analytically, but it
yields more rapidly convergent formulas, with some
flexibility in how the answers are represented.

The technique used in this paper readily expresses
the four-center integral as a double infinite sum of
one-dimensional integrals over the radial Fourier-
transform coordinate %. In the three-center cases
discussed in Papers I-III, this final integration could
be carried out in closed form by contour integration
techniques. In the general four-center case, we have
been unable to carry out this final integration in closed
form. The most important mathematical difference
between the final integrands of the three- and four-
center cases is the appearance of two logarithmic
branch points in the four-center case vs one in the
three-center case. Our main purpose in this paper is to
carry out the final integration in terms of convergent
infinite expansions.

The formulas given for the four-center integral in-
volve Condon—Shortley coefficients’ [Eq. (14) of
Paper I], various versions of the exponential-type
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integral,’ E,(x), E.(x), an(x), &(x) [Eqgs. (21)—(25)
of Paper I, and modified spherical Bessel functions,’
91(x) and IK,(x) [Egs. (15) and (16) of Paper I].
The formulas hold for integer-n Slater-type orbitals
with general values of the / and m quantum numbers,
with general values of the orbital exponents, and with
arbitrary nuclear geometry, except that all four centers
must be distinct.

II. SPECIAL FUNCTIONS, NOTATION, ETC.

To simplify the derivations in-succeeding sections,’
we define in this section most of the special functions
and symbols that are used.

We denote a Slater-type atomic orbital by :

N\ . —
(2.1)

Woimg (1) = Nr—L exp(—$r) Vi (6, ) .

The Y(8, ¢) is a spherical harmonic, (7, 8, ¢) are the
spherical polar coordinates of r, the { is called the orbital
exponent, and V is a normalization constant. The # and
[ are integers which satisfy

n>i+1. (2.2)

We use the following standard mathematical func-
tions®: spherical Bessel functions,

Ffix)=(—2)Yxd/dx) % 1 sin(x), (2.3)
9i(x) =2 (x*d/dx) %! sinh (%) (2.4)
ao x2S
T A& )N@+2stnn (2.5)
=—}{K(—2)+(=Dixi(x)], (2.6)
Ki(x) = (—x)!(xd/da) w1 exp(—x) (2.7
w b1 1)e+l
-3 ;’%—:(7_111)—“ (2.8)
~ xtexp(—zx) (as x—0); (2.9)

¢ Handbook of M athematical Functions, M. Abramowitz and I. A,
Stegun, Eds., Natl. Bur. Std. Appl. Math. Ser. No. 55 (1964).
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the double factorial function,
(2N)1=2¥N! (NZ=0),
(N—-D U= (2N)Y/ (2N !
=(=D¥/(=2N-1,
1/(2N) =0 (N<0);

various versions of exponential-type integrals,

E.(x)= /1 °°dtt—" exp(—x!)
= (—d/dx) Exn ()
=0 (%)
=E.(x)~ (— ) [loge—¢(n) J/ (n—1)!
(n>0)
=@a(x)+ (=) x"  (#<0)
(as x—w),

~ xlexp(—x)

E.(x+y)= f:(—?l)f";(@ Uyl <laD),

=0
o (—x)'
=0; (i) SI(s—n+1)

= (—d/dx) E",.+1 (%),

E.(x)=— (n>0)

an(x)=— /1 di t* exp(—uxi) (2>0)
0
_ 0 (_x):
o si(s+n+1)
= (—d/dx)&n1(x),
(%) = (—d/dz) By (x),

6 (x)=F_.(x) (by convention),

i o (—5)Fus
Ewty= 55208y <oy,

=0
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(2.10)
(2.11)
(2.12)
(2.13)

(2.14)

(2.15)
(2.16)

(2.17)
(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
(2.26)
(2.27)

(2.28)

{on e Fay(6®) ) E[( d )"Hb(;bq 4

ds,
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the logarithmic derivative of the gamma function,

¥(n)=(d/dn) logI' () ;

the Condon-Shortley coefficients,?

(2.29)

c*(hml; lz"la) = [471‘/(2)\'{- 1)]”2
X f dQ Vi Y, my,mm (2.30)

which are nonzero only when

h+L+Nis even (2.31)

and

| =l | NZL D (2.32)

and the standard expansion,

o0 1
exp(ik-1) =dx 3 i'fi(kr) 35 Yi*(6, 0) Yi" (0, 1) -
=0 =

"

(2.33)

Oiten we use both Cartesian and spherical polar co-
ordinates for the same vector, e.g, r, k, R, etc., cor-
respond to (7, 8, @), (, O, ), (R, Og, ¢r), etc.

We often meet the expression, (x~'d/dx)!x™!, which
has the expansion

(18- £[Jemtrrrr(2)”, s

where

[’]z At
pl  I—wiuwt’

L

’

"

we define several special symbols which appear re-
peatedly: the 3-A symbol,

(2.35)

In addition to

( A ) . @a—DU
A/~ QA1) N(2A D1

(2.36)

the symbol {++«F),({s®R1)+++},

1) d\u d \netdi—h
) s’*bh+l»+1FM(§ba1)(§rl —) s“b“l(— —) Gh‘“l], (2.37)

dg‘b dg-b d{a
=L e Foy(GoRa) + + « JRE oA+ (— 4/ dg ) mertbity, (2.38)
where F will be either § or X, and where the [+++F++-] was used in Paper III. The {-++F--+} will also be used

with subscripts 2, ¢, d instead of 1, @, b.
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We define via integrals certain special functions, in terms of which the four-center integral will be expressed.
The evaluation of these special functions in terms of simpler functions is postponed to Sec. V;

+

€17)
A(As, R; As, £z, Ra; A, $1, Ra) = (2mi) ! f dx3ns(2R) xhrHhe

0

d\h
X (x"l 3;) & Eapgga (§2— %) R J— 2 (R— Ry) 22 Eppa[ ($2— ) (R—R1) 1}

)1 log(¢1—x)

d\M
X(x‘la) IR (fy— o 239

+

3 d\M
A2(As, R; Ay, fazt b, Bu; Ag, £z Re) = (270) / dxﬂCAa(xR)x”‘“’(x“ d—x) xt

0

X {Bapya[ (ot £+ %) Ra ]~ Bonpal Gat6o—2) Ral— Fonrial (Ca— G5 2) Ru ]+ Baaral (G H—2) Re]}

log($a—x)

AT (2.40)

d\
% (x—l E; x—l(R22A2 (g-z_ x) 2A2

R , . It—ta™
A4(A3: R; A17 $at=0, Ry; A fc:‘:?d, &2) = (2#1)—1 decAz (xR) ghrtha

]

d\Mm ~ L ~ ~ -
x(x‘l 3;) & M Baral (Cat-Got2) ] — Bansal (fat-So— %) ]~ Borgal (fa— §o-2) CaH-Boapa (o= $o— %) G ]}

d\M
X (31 2) L (2 b 28 08 fam ) (e fam ) log (=), (241
. ' @24
SB(A3: R; A17 fl, (Rly A2> .(-27 (R2) = (27”:)_1(_ 1) Aﬁlmlel(R+(R2)—2A1 /

d\M
3 deCA;(-xR)xA1+AZ(x"1 Zi;c) xt
log($>—x)

d\4
K Eapa[ (51 %) (R+®e) ]<x— 1 Ec) FTIRPA2({p—x) 22 A1

, (242)

+

€2 d \M
B(As, R; Ay, §1, 83 Ay, $ay Re) = (2mi) ™ _/ dxd s (xR) xA‘+A2(x_1 a) & Bl (S1F %) Ra ]

0

x) 2Ag log (?2‘ x)

a0 O

d\
X (x’l d_x x IRz ( (o~

. - fa—to—Se—ta) "]
Ca(As, R; Ay, Sazfoy Bu; Ag, §y, Re) = (2a1) / dx¥aq(2R)

«

Az

d\M d
)bt 2 o B Gt i) 00T B Lk )06} (27 ) 2 Bl G0, (244

Ca(As, R; Ay EarkCo, B Ag, $o, Ro) = (2ard)

[(fa—ts—te—ta) "]
/ dxX s, (xR)

0

d\M - . o d \» o
XxA1+“2<x”1 2;) aH{ Bonya (St §ot @) Ry~ Boaya[ (§o—Got-2) (Rx]}(x“‘ g;c) 2 Eapga (fa— ) Rel,  (245)
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. (e O T
Cgl(Ag, .R, A1, $Cat=$o, B A;, $oy (B.Z) = (271'1)—'1 dxCK’,A,(xR)

[t o)1 Log(§urt St ) — (Cam Gt 2) 21 log (fa— ot )}
(2A)!

A
>< xA1+A2(x—l i) lx_l(ﬁlel
d

X,

d\
X (x—l Zc) F B[ (fa—x)Rs], (2.46)

[+ Bon (Fa®R) - -+ }Cal (As, R; sy Carlo, Ru; Ag, $ay Re) = Lo+ Fony (GoRa) =+ }
X {Ca(As, R; As, Fazt=e, Bu; A, §3, Ro) —Ca(As, R; Ay, fazkfo, Bu; Ag, £3, R}, (2.47)
Ca(AsR; Ay, Fatbn, B Ay, Somtefa, Re) = Co(AaR; As, Famk=$o, R Agy SetEa, Re)
—Cy(AsR; Ay, Ca=fn, Rus Agy $o—$a, Re),  (2.48)
Ca(AR; As, Sty Bs; A, Sortefay Ra) =Ca(e o+, Eob-bay Ra) —Cale+ +, fo—Fa, Ba), (2.49)
Cil(Asy R; Ay, Sak=fo, Ra; A, $o=fa, Ra) = Col (oo, fotfa, Ba) —Cal (0 ¢, S o, Ba). (2.50)

1II. FORMULATION

The four-center integral is defined by
I"c temete palamal gt nalamata o lomaty ((R\, (R2, R) = (NaNchNd) —1 / dVl [ dV2rl‘2_1[‘I,m lun.k‘.* (r2) \I,n.. lamata (r')."— m).) ]*
X [\I’"a lamata*(rl_ R)\I’nblbmm (rl— R—al) ]: (3-1)
= t‘d;ab(aly (R'Z, R) . (3.2)

Following the approach developed in Papers I-ITI, we use simultaneously the Fourier-transform convolution
theorem, the expression for the Fourier-transform of a two-center charge distribution obtained by expanding
one Slater-type orbital about the origin of the other, and the expression for exp(tk-®)[Eq. (2.33)] to obtain

-0y 2414 li+la Btle Atz

Lea(@, @ R)=3 > > > ¥ ¥ % 5% ¥ radn@et

U=0 lp=0 my=—1l1 me=—l2 Ar=|l1—l| Ae=|le—ig]l Ai=jli—ls} Ae=|lz—le] As=}A1—Aq|
X (2A1+1) (2A2+1) (285 1) 4 J2cM (Bymin; Lim ) 22 (Lamg; L) c31 (lumy y bamta) €22 (lgma; Iomn.)
X" (A1, ti—mma; Mg, ma—me) Va™ ™ (Bay, oa,) Y)\zmd_mz'y* (00zs @) ¥ a2 ™matme (6, or)

. Xch;abll)‘“ Ihai Ahzi A ((Rl’ (R27 R) ) (33)
where the “radial function” is defined by

Lgguiatibida(Q, Ry R) = I3, (34)
=gmd(—1) ks / Bkjag(RR) Gupn iy 075780 (b, B1) Grrgrang™F ¥4 (k, ®Ry), (3.5)

and the G’s are the “radial part” of the Fourier transform of the two-center charge distributions,
Gopardarsbo(f, R) = 2mid=1(— 1) A e e gy (GR) « « « [ BA (K7L d/dk) 2k Eaaa[ (Fat-5o— k)R]
~ Easal (fat-§obik) R} it (= 1) A - - B (Gu®R) « - oA (B d/ ) S {Bonial (St (o~ k)R]
— Bl Gt bt i) R 1= B[ (Sa— o— k)R I+ Bonn[ (Ca— CoHik) R T} (3.6)

Note that in Eq. (3.3) summations over I’s, N’s, and A’s have restrictions like Eqgs. (2.31) and (2.32). The main
difficulty in evaluating I.4a(®1, ®Re, R) is in evaluating the one-dimensional integral Jeq;a™d.
It is convenient to break 7.4 into four parts:

L= IO+ IO [OL O, €X)
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where
TO= (m)~1(— 1) MPsthp e

300
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duRa,(aR) { =G, (Go®) » o+ }{ o+ * Iy (EaBa) + o+ ]
d\M
X [xAx(x—l E_/;—c) £ Eanpa[ (Sat$o+2) RaJ— Eaapa[ (Fat-E5— ) Ra ]} ]
d\M
X [xAz(x—l Zc) Y Byl (CoEat 2) R )— Eopgia[ (o Fa—x) mzj}] , (3.8)

J@= (27”')—1(__ 1) At '[—m dfo’,A,(xR) { . '9>\1(§'b(R1) .

..}'{...gq)\z(g-daﬂ...}

d\M
X [x”‘(x—l ;i;) &Y By (St GoH2) Qu]— Eonpa (Cat-— %) Ri ]} ]

d\4 ~ -
X [x“?(x—‘ 5;) *H{ Banga[ ($otTat2)Re]— Bopgpa[ (Gt a—%) Re]

- ~2Az+1[:(§c“§-d+ x) &2]+E~2A2+1[(§'c”‘ $a— x) (Rﬂ} ] ’ (3'9)

I®= (27i)1(— 1) A1t [_iw dxRag(xR) {++ K (GoRa) v+ + }{ I ($a®Bg) » o+ }

d\M o ~
X [x“’(x“l g;) B ot Sot2) Ca]—Eoa [ (Sat-$o—2) Ry ]

— B[ ($a— o+ 2) Qa1+ Bapa[ (Ca—bo—10) cﬂﬂ}]

x[x(f 5;)“}1{EzA,+1[<:c+;d+x>m2]-Emmmcm—x)@ﬂ}], (3.10)

10 (ri) (= )40 [ Gk (6R) -+ 30808 -} -+ B -}

d\ ~ -~
X[x“l(x— 1 E;c) e { Boaa[ Sat ot 2) Qu]— Eana[ (Sat-$o— %) Ro ]

—Em+1[(s°a—rb+x)m1]+E'zAl+1f<a—rb—x)mﬂ}]

Ag
x[x“(x‘ 1 %c) e Bonai[ et 5o+ 2) Ro]— Broa[ €t fa— ) Rs ]

~ B[ (Co—at 2)Ra]— Bssgal (fo—Fa—1) (Rz]}] , (3.11)

and where @ denotes the principal value (cf. I). Note
that we have made the substitution

k=ix
and used the identity Eq. (2.6).

(3.12)

Evaluation of I.4a is complicated by two con-

siderations: the relative values of ®1, ®;, and R, which
eventually determine the behavior of the integrand at
infinity, and the logarithmic branch points in the

integrand. Equations (3.8)-(3.11) represent a con-
venient starting point for discussion of these complica-
tions and resolution of the final integration in
ods abrad.

1IV. EVALUATION OF I.gq™d

Our approach to the evaluation of I.zw™d, i.e., of
the I® [Eqgs. (3.8)—(3.11)] is to exploit as fully as
possible contour integration techniques. In the three-
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3c

2b

3a 3b

R ®,
Fic. 1. The cases and subcases for which the various formulas for
Ica;ap™9 are valid.

center cases, Papers I-III, it was always possible to
arrange for the integrands to vanish at infinity in a
half-plane containing no singularity worse than a pole
(i.e., no branch points). The contour was then closed
at infinity and the integral evaluated by the residue
theorem. In the four-center case, it does not seem
possible in general’ to use the residue theorem alone,
There are always terms, no matter how the contours are
deformed, which involve integrating around logarithmic
branch cuts. These terms we have evaluated by con-
vergent infinite expansions.

We note that the I® are functions of many variables.
There is a great deal of flexibility in the choice of ex-
pansion variable, and we report here only selected
choices.

We assume that the reader is familiar with Papers
I and III, which discuss the method in detail. In this
paper only a brief sketch outlines the path from the
integration of Eq. (3.5) to the expression of Joga™? in
terms of simple functions.

A. Cases and Subcase Classified by Relative Values
of G‘ll, (Rz, and R

The manipulation of contours in Egs. (3.8)-(3.11)
requires knowledge of the behavior of the integrands at
infinity. The building blocks of the integrands are
E,, E,, and X, functions, whose asymptotic behavior

K. G. KAY AND H. ]J.

SILVERSTONE

is given by Egs. (2.19), (2.17), and (2.9). The be-
havior of the I® integrands depends on the relative
values of R, B, and R. Without loss of generality, we
assume Rq1>®y; the identity [cf. Egs. (3.4) and (3.5)]

L;d;nbll)‘l; I2hg; AtAg; AB((RI’ Ra, R)
= (—1) 88 giuidsdabnds(@, Ry R)  (4.1)

can be used to reverse the roles of ®; and ®,. Then, the
way the various terms in the integrand vanish at
infinity delineate the following three cases with five
subcases (which are illustrated in Fig. 1):
Case 1. R2®:11+®q,
Case 2. 0,2 R+@,,
Subcases (a): R1>R> Ry,
(b) . (RlZ(RzZR,
Case 3. &1*@2SRS(R1+G{2,
Subcases (2): R20: 2R,
(b) !(R]ZRZ(R‘),,
(C) : (RlZ(RgZR.

We treat the integration of I.4a"d case by case.

B. Case 1. ®;+®R:<R

For Case 1, the integrands of all four I® are domi-
nated at o by Ka;(x*R). We deform the integration path
to run from oo +1e to 0 to © —ie. We now treat each
I® separately, reducing it to a linear combination of
the functions given in Sec, IT.

1.1®

Regard T®W[Eq. (3.8)] as consisting of four terms,
The term involving
oo Boppal (ot fot2)Ride « « Eonga[ (Fetfat2) Ra ]
(4.2)
has no singularities in the right half-plane, where the

integration contour can be closed, and contributes just
a residue at x=0 to J®, The term involving

v o s Bonal (Gt 55— 2)Rel*  » Bappa[ (Co-Ea—%) R
(4.3)

has two logarithmic branch cuts inside the integration
contour."We use the identity

f dxRag(xR) * + * Esayal (Cut-o— %) Q] » » Bonga[ (e hFa—2) R

= / dx®ys (xR) - ‘EzAH,][(fa"*‘g'b_ x)d)tlj' o {EzAz-{»l[(g-c—}’g‘d“‘x) ®s]

— R (R—®) 2 Eppp [ (§ot§a—2x) (R—R1) 1} [ dxKpg(xR) « « « Bopal ot fo—2)Ru ] « - REA2(R—Ry) 242

i

¥ Rod

X E2A2+1[ (§c+§.d— x) (R'— (Rl) J: (44)

coftain 'values of the parameters a few of the Jeqias™d can be expressed in closed form via the residue theorem.
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to cast the double logarithmic branch cut in a form [second term on right-hand side of Eq. (4.4) ] which can be
closed in the left half-plane, which has no singularities. The first term on the right in Eq. (4.4) is essentially an
A [Eq. (2.39)7], and both terms give contributions from residues at x=0.

The term involving

o Epppa[ (Cat-$ot2) Rl < - Eangpa[ (§et-$a—2)Ra ] (4.5)

has one logarithmic branch cut enclosed by the contour and one outside. We use the identity
/ dxXay(xR) + +  Eppra[ Cat- 86t 2) Rul + - Bapora[ $et-$a— ) Re = / dxXa;(xR) * + - Esnra (SatTst2)Ra]e«
XA{ Bapgpi[ ($et$a—2) Ral— R222(R+Ry) 282 Epp, 1 (et Fa—x) (R+-R1) 1}

-+ / dxXa,(xR) v+ Eapa (Ga 8 H2) Ri ]+ « «RAEV2 (R Ry) 282 B p0 1] (Fet-Ea—x) (RH®R) . (4.6)

The first term on the right in Eq. (4.6) has no singularities in the right half-plane and contributes only a residue
at #=0. The second term can be closed in the left half-plane, yielding (after letting x——=x) a B [Eq. (2.42)]
plus a residue at x=0. The remaining term in I which involves

o Eopa[ (Cat$o— ) Rl « Eaaga[ (fet-fat %) Re ] (4.7

is treated the same way as the term in Eq. (4.5), mulatis mutandis.
With these considerations, I® is

IO=2(—1) Al (5R) v} oo - Irg(Fu®Re) + )

A
X [6A,,A‘+Ag( A ; )G{lel(RfMR— A1 2®yao ($at§o) R JRactol (Fot-§ ) R ]—Buanl (Fat15) Re]
1A

X (R+®) oo (foFEa) (RHRL) T— (R+Rg) o (Fat£5) (R+R2) 1Racee] ($otEa) Re]
— G (ut-£0) B ] (R—Gt)aal (§-58) (R— ) 1} +dns s (— 1) ( Af;)oazmm

X (=B (Cat+$0) R (RF-Cr) o (§otEa) (R+R1) ]~ (R—®Ry) ol ($ot-§a) (R— @) 1}
+ &2 (R+®Re) A1 Eoya ($at50) (R+-G2) JRe ($oH5a) Re])

A
+08a5.80-4,(—1) A‘( A z )mle‘RAs (Buool (Fot-1o) RuIRP22{ (R+Cu) 222E g0 1 (Fe+-Ea) (R4-G) ]
1433,

+ (R—®) 22 Egpp i (Fot§a) (R—O) ]} — (R+Re) o ($at$0) (R+R2) 1Eosoa[ ($ot5a) Ro])
L=l TS X Rt (2) (2 24— 1) 1(208) 1 2ra— 2A5— 1) 11(209) (25— 2A5— 1) 11T
20 v>0 vl ”
[ritvetre=(Ar+-AstAsi2)/2]
X AR gy i1l (Cat$o) R R 22 (R Q)2 r 282 B0y s (Fet-$a) (R+HG4) ]
— R Eary il (Cart ) IR (R— ) #5244 Bsy i (et-Ga) (R— ) ]
F R (R+Ro) 120 Fpp g i (Cat§5) (R Ro) IR 2 Fong gmmia (Fe-¢a) Re ]}

~UA(As, R; Ay, Eat-85, Ru; Ag, $otCa, Re) —B(As, R;.Ay, Cat$o, Ruj Ag, Fot-§a, Ra)

._%(A3;R;A2;§c+§d,m-2;Al,?a+§b,(ﬂ1)] (Case 1). (4.8)
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2. I® and I®

In I®, as well as I®, there is only one logarithmic branch cut enclosed within the contour. Without further
manipulation, they can be written as Ay’s [Eq. (2.40) ] plus residues for x=0:

I®=(—1)ArtM{eoigy (HR1) > oo e B (Ca®Rs) -2+ }

A
><[23A:.A1+A2(A122)&12A‘*‘G’u“’””R“‘““ao[(§’a+§b)®1]{&o[(§c+§a)ffiz]—&o[(s“c—s“d)&z]}

+A2(As, R; Ag, $oct={a, Ra; $at oy cm)] (Case 1), (4.9)

I®= (—1)AHhefee 30 (GF) oo+ oo e (§a®Ra) -« .}

A
X[25A3,A1+A2(A Z

1432

)C"uz““qﬁ’tfA””R'As—1 {6l (Cat85) Ru]— Gl (Fa— ) Rul} oo (Eot$a) Re ]

+A2(A8; R; Ay, $a=$, B A2, CotCay az)] (Case 1). (4.10)

3. 1I®

The integrand of I® has no logarithmic singularities. The only contribution to I® in this case is from the
residue at x=0: '

[®= (._1)A1{.. « RKon (CBa) }{ Ko (Ca®z) « }

A
Kosnason o JREHOHRA Gl (G 1) O]~ e )0)
X (B[ (FetTa)Re]— o[ ($o—a)Ro]) (Case 1). (4.11)

C. Case 2. R+®R<®;
1. I(l)

The integrand of I® [Eq. (3.8)] is dominated at © by Epa[ ({ot§s=2)®:]. For the (4«) term, the contour
can be deformed to be (o 4-4¢, 0, © —ie), and for the (—x) term, to be (— « +14¢, 0, — 0 —ie). After substitution
of —z for x, the latter term can be combined with the former by using Eq. (2.6) to yield a B [Eq. (2.43)] plus a
residue at the origin:

IO=4(— DAl ooagy (F@y) e oo } foo s (Ea®p) *+ }

A
X[5Aa,A1—-A2(— 1) “2( A )CWAHRMEzAm[(f at$8) R Jao[ ($ot$a) Ra ]
3

1
2.
— (—1)8B(As, R; Ay, £at$o, Ru; Agy Eot-Ca, cnz)] (Case 2). (4.12)

2. I®

The integrand of I® is also dominated at © by Esppi[ (fot-{o=£x)®R1], and the contour can be deformed ac-
cordingly, as for I®. In this case, however, there are no logarithmic branch cuts enclosed by the contour, and the
only contribution to the integral is from the residue at the origin. The result is

I®=2(—1)a{.. I (Go®e) e oo o B (FaRa) » -}

A
K Bag a-ae(—1) AQ( A211&3)G{22A2HRA3E2A‘+1[ Catio) Ru{G[ (Gt Ea)Re]— o[ ((c—Fa)Re]}  (Case 2). (4.13)
3 I®

19 is slightly more complicated than I® for Case 2, because the Byl ($act$p4)®a], which contains the
largest ®, has “mixed” asymptotic behavior [cf. Eqs. (2.19) and (2.17) ]. The consequence is that Case 2 has two
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subcases, depending on the sign of R—®». The contour for the term involving
o Boral (fattot )R]+ - Banga[ (Fetat ) Ra] (4.14)

for both subcases can be closed at + o and contributes only a residue from x=0. To treat the term involving

oo Bopp[ (ot fo—2) -+ » Eang [ (SoH-Sat-2) Ra, (4.15)
first pull the contour to the right of x={,+{s [picking up a residue at x=0], then use
Boapa= Banyrt (Boayr— Eaagya) - (4.16)

Note that the deformed contour passes to the right of the logarithmic branch cuts at x= {,=={5. The contour for the
term in 7® involving Ess,qi in Eq. (4.16) can be deformed into [ — w--de, ({at{3)~, — o —i€c], which, after
letting ¥——x, becomes a C; [Eq. (2.44)7] plus a contribution from the residue at x=0. The contour for the in-
tegral containing the last term in Eq. (4.16) can be closed in the right half-plane, where there are no singularities
to the right of the contour.

The term involving

<o Bl Gost ot £)Ru e« Eanoal (Fot-£a—2) R (4.17)

must be treated d1ﬁ’erently for the two subcases. For Subcase 2a, ®;< R, the contour can be deformed into (o0 +7¢,
0, w —1e), which is seen to be a C; [Eq. (2.45)] plus a residue at the origin. For Subcase 2b, first pull the contour
to the left of x=— ({a-{3) picking up a residue from x=0, then use Eq. (4.16), the net effect of which is to change
Fio41 into Epp, gy with the logarithmic branch cut to the right of the contour, then deform the contour into [ o +1e,
(—fa—8) T, ©—ie]. The result is a C; [Eq. (2.44)].

Finally, the term involving

v E2A1+1E(§'aﬂ:§b-' x) 011] te E2A2+1[ (fc'}‘g‘d'— x) (RZJ (4-18)

can be similarly treated. It gives a contribution from the residue at x=0 for both subcases, and in addition, a
Co' [Eq. (2.46) 7] for Subcase 2a.
The results are

I®=(—1)dthefeeoqty (G®y) s e} {e e Dg(CaRe) -+ +}
A
X[ZBAS.M—A:(— 1) A‘( A Z )011“‘“13““(&0[ Cat06)Rud— a0l (Sa— )R 1) Eongal (Fot-£2) Re]
143,
- (—- 1) A3C2(A3) —R; Al) $at=0r, Ra; Az, g‘c+§‘ﬂ'y (R2) ~C’2(A3; -R; Ay, $at=$ry Ru; Az, fc'f‘?d; (RZ)

+Col(Asg, R; Ay, —§aTF &, Buj As, Cet$ay (Rz)] (Subcase 2a, (ﬁgSR), {4.19)

A
IO=(—1)8e( 003y (G »+ = } {+ + - Sra(§Re) - =+ }[ngm_Al(__ 1)A1(A Za)(RIMﬁIRAs
1

X {0l (§at50) Ru]— ol ($a— ) Rul} Basoa[ (St £a) Re]
— (= 1)8Cy (A3, —R; Ay, $ack(p, Ru; Ag, $ot$a, Re)

—Cg(As, R; Ay, $Catlp, Ry, Az, g'c'*—g'd, 012)] (Subcase 2b, (RQZR) . (4.20)

4. 1%

Subcase 2a is straightforward. The contour for all terms involving Egml[(;a:t{b—l—ac)m,] can be closed at
x—+ w0, and only residues from x=0 contribute to the integral. For the remaining terms, one uses Eq. (2.17}
for E2A1+1 The contour for the “E2A1+1[(§‘,,i§'b——x) ®:]” terms can be closed at = — o, yielding only a residue at
=0, and the “log({,==¢»—x)” terms give essentially an A4 [Eq. (241)] plus a re51due at x=0.

The treatment of Case 2b, R<®,, involves the following maneuvers: For the

oo By [ Gat=tnt2)Rad +  Basgl (Fefat2) e (4.21)



4296 K. G, KAY AND H. J. SILVERSTONE

term, close contour at =+ to obtain the residue contribution from x=0. For the (+a®;) (—®,) terms, pull
the contour to the right of #=¢.4-¢a [picking up a residue from x=07, then use

oo Bonpu[ (Gazebot-2) ] Bagga[ (SeE§a— %) Rs ]
= ¢ 0 R (Sat=ot2) 28 log (Safot) / (2A1) 1+ o« Eanga[ (Cobfa— %) Rz
+{+ - Boapa[ Sttt 2) R - Banga[ (fockfa— ) B ]
=« R (Fumt ot x0) 220 log (Cack ot ) / (2A1) 1o+ « Bapga[ (Comefa—2) R ]} (4.22)

The integral over the bracketed terms in Eq. (4.22) vanishes, because the contour can be closed at #= c and does
not enclose any singularities. The contour for the integral over the first term on the right of Eq. (4.22) can be de-
formed to [— o0 +de, ({e+§a)™, — o —ie], which, after letting 4——x, is seen to be a C¢ [Eq. (2.46) 1.

Finally, we consider the remaining terms together. By virtue of the derivatives (¥~'d/dx)42x, in the integrand
of I® [Eq. (3.11)], there is an identity [cf. I, Eq. (48)],

® / dxRa,(2R) + + « Boroa[ (fakfo— 2) Ry ] (51 /dac) Aot {Bononil (fobfat) Rol—Bora[ (Sokfa— ) Ro] }

~¢ f dwKrs(aR) -+ Banal (oo 1) Qo] (1 d) bt
X @eeR24{ Bypo [ (et at-2) R]— Basga[ (ot fa— ) R}
+o / AR sy (xR) + » « Bypysa[ (§urtfo— ) O] (3d/ ) b
X{ Bappa[ (Sertefat ) R ]~ Re*eR 242 Eyp [ (Fot$at2) R]}
—@ f dxRag(xR) + + « Banya[ (Faskfo— ) O] (214 / dic) A2t

X { Eapana[ (Cemefa— ) Qo] — R4 R0 Eyp, [ (¢o-Ca— ) R]}.  (4.23)
The first integral on the right in Eq. (4.23) is treated as in Case 2a, and yields an /1;; plus a residue at x=0. The
second integral on the right in Eq. (4.23) is treated by substituting Eq. (2.17) for Fax, closing the contour for
Epasia on the left, and deforming the contour for the “log” part to [ +4e, (—{o—¢a)+, © —ic], yielding contri-

butions from residues at =0 and the difference of two Ci’s [Eq. (2.46)]. The contour for the last integral in
(4.23) is closed at = — 0 and yields just a contribution from x=0:

TO=}(= )M+ By (Eol) ]+ Boa (£e) -+ -}

X[Z%,AI_AZ(— 1) AZ(AZ:;\:;)%ZAZHRM{E~2A1+1[($°a+§'b)ml]—EzAm[((a“ﬁ'b)@J} {8l (¢t §4) Ra]— ol (Fo—$a) R}

"fi‘i(As, R; Ag, Cooba, Ra; Ay, Fak=i, (Rl)] (Subcase 22, ®R:<R), (4.24)
FO=F(—1)8 {3, () -} -+ o (EaB)
A ~ ~
X [25A3.A1~»A2(— 1) “( A ; )%“2+1RA3{E2M+1[(§' at$0) Rud— Eonya[ ($a—$0) Qu T} {0 (Fot£0) Re]— ol (Foma) Ra ]}
2413,

~RMR2824,(As, R; Ag, Cekta, R; Ay, Famtt, Ru)
—Cit(As, R; A1, —$aF$o, Ru; Ay, —EF fa, —Ra)
+RFR2CL(Ag, R; Ay, —EaF 53, R Aoy, —§F s, —R)

— (= 1)8CHAs, —R; A1, —£aF s, Ou; Agy, —EF Ly, —mz)] (Subcase 2b, ®s>R). (4.25)
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D. Case 3
1. 10
The treatment of I® is exactly the same for Case 3 as for Case 1, except that the contour for the term involving
s o Eonpa[ (fat-$o— )R]« Espoa[ (Cot-$a—2) Re] (4.26)

can be closed at #= — «, yielding only a residue at the origin and no %. The result is:

I0=2(— DAl o gy (GRy) » = - «Irg(CoRg) » « }

X [5A3,A1+A2( A?Z)Rf“@z“m—“_l @[ (CatE6) R {Rao[ (§eta) Ro]— (RHRa) ol (§et-¢a) (R+R) 1}

— (R+8s) aul (fat£3) (RF-®a) JRecto ($et§a) Re])+-05,81-00(— 1) A2( AI:;)(R?MRM
X (Eanys[ (Cat§5) Q] {Roon ($et-§ o) Rel— (RH-Cu) aul (St ) (RH-G) T}
FEPM(R+Re) 24 Epyy [ () (RF-Ge) JRacn (ST a) Re])+0a5, 000, (— 1) M ( AAL)%“‘R‘“

X (@t (§at80) Ru{ Eangral (Fot§ 8) Ral+Re2A2(RA-®y) P42 Eppy i ($e-§a) (R+Gu) 1}
— (R+®a) o[ ({at$3) (R—R2) 1B2apal ($ot$a) Ra])
=Dl Y XS Resei(20) 12— 24— 1) 1(20) 1(2a— 2A5— 1) 1(205) (25— 285 — 1) 11T

120 »e>0 w30
[vrtvatve=(Art-AntAst2)/2]

X AR Egp gy (Fat$o) R Ro¥2Eong—2uia (Cot(a) Re
~ QP Epa st (Fat- ) Ru R4 (R Ra) 5200 By gy ($et-$a) (RFGa) ]
— @2 (R+Re) 2281 oyl (Cot$o) (RHRa) JR¥2Eany g ($et§a) Rel}
—B(As, R; Ay, Cat8o, Ru; Ag, FotEa, Ra)

—B(As, R; Ag, {otEa, Rey Ay, Lot 0oy (Pq)] (Case 3). (4.27)

2. I® gnd I®

Both I® and 7® can be treated in the same manner. Consider first 7®, The treatment for Cases 3a and 3b is
exactly the same as for Case 2a, except for the term involving

s oo Bopal (Fat=So—2)Ru]e + » Bapga[ (St Fab2) Re . (4.28)

In the present case, the contour for this term can be closed at x= -+ o, yielding just a residue at x=0, whereas in
Case 2a, part of this term led to a C,. Precisely the same considerations hold for 7® in Case 3c versus Case 2b.
Next consider I®, It is easily seen that 7® in Case 3a behaves like I® in Cases 3a and 3b, and I® in Cases 3b
and 3¢, like I® in Case 3c. Also, {, ®y, etc., are interchanged with {., ®s, etc.
The results are:

I®= (— 1AM eegy (GRy) oo Fleo e Rpo (¢ aRe) .}

A
X [zam,m_u—- 1) ( Aﬁ;g)mzzAwRAsEzAhu[(mm QT EL (Fo-£.0) BT B (Fem ) BT}
—Gz(AsR, A2a $et=(a, Blo; Al; §a+§bi (Rl)

+Cot(As, R; Ag, ~ T a, Ra; Ay $at0, (Pq)] (Subcase 3a, R>®;), (4.29) v
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I1®=(— 1)A1+)\1{ co e (G®Ra) s oo oo v B0 (TaRa) - }

A
X [25As,A1—Az(“ 1) ‘”( A ; )fRz?AHRMEzAwl[(? at$0) R l{ o[ ($ot§a) Re]— o (Co—§a) Rel}
2413

—Ca(As, R; Ag, fork=$a, Ro; As, $at(o, ml)] (Subcases 3b and 3c, R<®:), (4.30)

I®=(—-1) A1+>\2{ v o B ((sRe) v o } forrdrg(ta®s) }
A
X[zaAs,Aeﬂh(_‘ 1) AI<A Z )(Rl?AH'lRA:’{&o[ (g’a—l—fb) (R]:]—&o[ (f‘a— [O) 6{1]}
143
X Eapgal (St £a) Re]—ColAs, R; A, Saztelo, R Ao, Eoba, Re)

+Col(As, R; Ay, —0aFin, Ru; Ag, FetCay (Rg)] (Subcases 3a and 3b, R>®.), (4.31)

I®=(—1)Mtrefoge, (6R) - } {ooIr({aRa) -}

" )%MIHR“{&OE (Cat)Rai]— o[ (§a—$0) Ru 1} Bonop[ (St a) Ra

26 _a(—1 A‘(
X[ Az de—p (— 1) e

—Co(As, R; Ay, $a=85, B Agy Sot-Eay (Rz)] (Subcase 3¢, R<G:). (4.32)

3. I®

For Cases 3b and 3c, I® is very similar to Cases 2a and 2b, respectively. The difference concerns the term
/ dxKay(2R) * + » Eonpia[ (Fakbo—2)Ru]" « « Boppa[ (Sekfat2) Re . (4.33)

In Case 2, the contour for this term could be closed at x= — «, and only a residue from x=0 survived. In Cases
3b and 3c [®2>R], an additional part of (4.33) survives

[(~te—$a)71
/ 00K py (4R) - -« Eagyal (fartti— 0) O]+ +  Eangal (Ferkfat2) Ro], (4.39)

which is essentially Cy [Eq. (2.48)].

For Case 3a, the contour for those terms in 7 which involve E2A2+1[(§‘ ekl tx) (Rz] can be closed at x=c in
the right half-plane and contributes only a residue at x=0. The remaining terms can be written [after taking into
account the effect of the {+++&y\(xR)+--} operators]

f dxRa;(#R) + + » { Boa gl (FattoH2) Qo ]— Bonpa[ (Catfo—2) Rud} + » « Bonoi[ (forkfa—2) Ro]

- / dxRag(xR) + « + {Bonii[ (Cat ot 2) O ] — Eoa i (Cak G~ %) Qe ]} + « «RPh2(§ b fa—x) 242 !_og(g(‘”z—:zi“r:f).
2)!

+ / dxKag(xR) * + « Bon il (FarkfoH ) Ra e « « Banpa[ (e fa— %) Ro

)2A1 log(g‘aigﬂb x)

(2A) ! -+ Eappa[ (Setfa—2) o]

— / dxRas(xR) <« «R2M (Eokfp—

- / dxKas(R) =+« Eopya[ (fatbo— %) Rule « » Eanppa] (Fekfa—2)®R2].  (4.35)

The four terms on the right-hand side of Eq. (4.35) go to zero, respectively, at =+, 40, 40, and ~ w0, and,
in addition to residues at x=0, yield an 4, [Eq. (2.41)], (4 [Eq. (2.49)], C¢ [Eq. (2. 50) 1, and zero, respectlvely
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The results are:

IO=F(=1) {50 (5®R) ++ -} {++ Ko (GaRo) + + +}

A, ~ -~
X[ZM.A:—A;(_ 1) A‘( A ; )011“‘13“(&0[(&‘ at$5) Ba]— o[ (§a—$3) Bul) (Baagra[ (Cot§a) Ro]— Hoappa[ ($e—a)Re])
3423,
—Ay(As, R; A $artefs, B Ag, Sl Ra) —CalAg, R; As, fakfo, Bu; Ag, Fokefa, Ba)

+Ci(As, R; Ay, —§aF o, Gu; Ag, $ofa, (Rz)] (Subcase 3a, R>6,;), (4.36)

TO=F(— 1) 8-+ B (3B) <} {++ Ko u) -+

% [261\3 An(—1) Az(Al:j&z;)%ZAmRM Fonerl §at50) = Bonyial (Ga—0) D) { &L (Sot-§) Re]— &l (£o—Fa) Ra )

—Ai(As, R; Ay, Eokefa, Ra; Ay, Factfn, Br)

—Cu(As, R; Ag, Lotba, Ro; Ay, okl (R1)] (Subcase 3b, ;> R>®y), (4.37)

TO=3(—1)81fue s B0 (£380) =} |+~ Hong (Fa®e) + + =}
X[Z&Aa,Al—Az("‘ 1) Aﬂ( lé;g)@z“ T RA{ Bopa[ (Fat$0) s ] Boyal (Ca—$0) Ru} {Rol (et a) Re]— o[ (Fe—Fa) Ra}
— @R, (As, R; Ay, Seeta, B; A, Fazely, B
—CyH(As, R; Ay —§aF 8o, Ry Ap, — (T8, — Ra)
+®R2A2R2MC I (Agy Ry Ay, —§aF 8oy Raj Agy —§FLa, —R)
— (—1)2C(Ag, — R; Ay, —EaF Lo, Ru; Aoy — 5T (a, —R)

~Cu(Az, R; As, §ot=§a, Ra; Ay, Sak5, (Pq)] (Subcase 3c, R;=>R). (4.38)

V. EVALUATION OF CERTAIN SPECIAL FUNCTIONS

In this section we give formulas for the special functions defined in Egs. (2.39)—(2.50). It should be noted that
the breakdown of I.44™¢ into special functions is not unique. After exploring several alternative choices, we de-
cided on the formulation given here, with the following aims in mind:

(1) All infinite expansions should be convergent in the appropriate regions of Fig. 1, 1.e., convergence should not
depend on the relative magnitudes of the {’s.

(2) There should be no “canceling” singularities in the final formulas when certain combinations of {’s vanish.
(3) The number of infinite summations should be as few as possible (believe it ornot!).

AU

The 2[ [Eq. (2.39) ], which appears only in 7V, Case 1, is designed so that the ¥ s,(#R) dominates the integrahd
at oo. The only singularity in the right half-plane is a logarithmic branch point at x={; (the logarithmic singu-
larities in the two Eap,.1’s cancel). We use

+

N —1_d__A—1 — 210_g£§'_—_9_6_)__ ® —11A_(§_x)2A -
(2i) lfw daias(«R) (x dx)x = = on —/; G (=K) (x dx)xl onre GY

N éfz"(“”"[(ZA*Zu) 11(20) 1T

X/ dxRps(xR) - x~271 (5,2)
[y
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the definitions of X,(¥R) [Eq. (2.7)] and o [Eq. (2.16)], and the expansion for E,(x+7v) [Eq. (2.20)]. The
result is

?’.‘ (A37 R; A2; g‘Zy (RZ) Aly g‘ly &1) = (— 1) A3§1A‘—ATA3_2(R12A10122A2 Z g‘l's[S”(S—‘ZAz— 1) '!]‘1
s=0
KR 2820, o4, 1(£2Re) — (R— Ru1) 22285 gy a[(a(R—R1) ]}

Az d Az
X Z ('_ 1)“1[(21\1—' 2#1) “(2!‘-1) ! !]_IRAa(R_l ERT) R—las+A1—A2— Aa—2n1—2(§ IR) . (5-3)

u1=0
The expansion (5.3) converges everywhere in Region 1, except at the single point ®=®,=0, where the four-

enter integral reduces to an ordinary two-center Coulomb integral.

B. 4,

Evaluation of A, is similar to that of ¥ [cf. Eqgs. (2.39) and (2.40)] except that the expansion
(2.28) for E,(x+y) is used instead of the expansion for E,(x+4v). The result is

As(As, R; Ay, Fak$a, Ba; Ag, £, Re)

= —2(—1) MappArFheAsi@ 2ArH@ 282 3™ (£ )2[ (254 2A,4+1) 11(25) 1T
s=0

Ag
X {6 (Fat§5) Qa]— ol (Fa—$3) Rul} 2’ (—=1)#2[ (2A0— 2u2) 1 (2p9) 111

d \As
XRA3<R_ ! (—Z—RZ) R—laA1+Az—Ax+2s—2p2—2(§ 2R) (5-4)

The expansion (5.4) for 4 converges everywhere in Region 1 except at the point (®,= R, ®,=0), in which case
the four-center integral reduces to a (1-2)-type three-center integral [see Paper I].

C. 4,
To evaluate A, [Eq. (2.41) ] note that 4, is the difference of two A»’s plus a residue at x=0. After some minor

manipulations to exorcise negative powers of ({,=={a), and noting that ({4'd/d¢a)b¢i(—d/dis)mtd% from
{eo Ky (faRs) + -+ } always acts on 44, one obtains

{‘ * 'Scxz(fd(ﬂz) e }AA4(A3, R; Al; g‘a:‘:?b) (Rl; A2, rcﬂ:g‘d: (R?)

={e e Brg(Ea®a) + o+ } [~ 2(—1) Bs@R 2ArH R 242 i R (2s4-20,+ D) N(2s) W]

§=0; (Ar+Ag—A32s—2>0)

X { @[ (Sat§3) Ru]— el (Ca— ) Rul} § (— )% (28— 2m) 1(2p) 1]

po=0

X R4(R71d/dR) R[Cotfa]brrhedottelay | n, poyosouy o ($et{a) R]
—[fo—FaJArtAraet®la, gy apise g o (Fe—Fa) R}
+2(—=1) 43855, 4,4 4R IR Qo[ ($ato) Ra]— o (Fa— &) R ]} [ (2A:4+1) 1T

X R8(R™d/dR) %( gﬂ (—1)8{ Bopal ($et$0) R]— Eopoi[ (Fe— £ 2) R}

XL(2A—20) 1(202) U (202 +1) T — {0 (fet-$a) RI— &l (S~ F) RIIL 2D 1T 1. (5.5)

The expansion for fL[(S.S)] converges everywhere.
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D. B
In evaluating 8 [Eq. (2.42)7], we use Eq. (5.2), the expansion for X, [Eq. (2.8)], and Egs. (2.34) and (2.35)
to expand (x~1d/dx) M%7, to obtain,

Ay Az A
B, R; A £, O Ao, T, ) = (— 1) bimiigtts 35 5° [ ‘][<2A2—2u2> 11 (206) VT

z1=0 pe=0 L M1
X (RF-Gtg) ~trw(— L)sapgon 3 L1 (s— 2A5— 1) R—Ao-1
=0

XN+ As—Ag—p1—2u— 35 A, &1, RHR2: 0,85, 1) (5.6)
The N is defined by

(Y] 1 —
N1, 01, B o, 63, o) = i) (=) | dar Bppa (Grob ) BT (o) "Og—gi::'_)x_)

We evaluate N for »,>>0 when #2>0, since these cases are required for B [see Eq. (5.20)]. For #<0, we need
only ».=0. First, when #2>0, use

(5.7)

n

an= Eo (t)i' P a— )¢ (5.8)

in Eq. (5.7), then integrate by parts (»,4?) times, to obtain

- vett) !
N(n; v, 0, s ve, 2, Ra) = 2 (i) (vot+-t)

t=0

$ iR R T ’—lEy1+v2+t+2|: (fr+¢2) (Rl:]. (5.9)

V2!

When n=—N—1<0, we take the following approach:

N(—=N—1;1, 11, R0, 55, 1) = ) AoV Ey [ (1 2)Ra] (5.10)
$2
0 g-l —N—-1
= (it /1‘ dt(t— _§1+§2) E, [ (51+52) 0l (5.11)

5 0 i g—l —N-1
=Gt [ ar expl— @ebraoud] [ v (x— = +s°2)> . (5.12)

Expand [x— ¢/ (51482) T in a Laurent series and integrate term by term to obtain

® (N+E\f &1 )k
N1 . - -~
N(—=N—1;0, {1,010, &2, 1) = (§1F+52) Eo( ! )(§'1+§'z

Enyonl (G-8) Q= Byl (§1+82) G ]
V1—N" k

X((l_ak,n-—N) — 8k - NEot [ (S1F§ 2)011]) . (5.13)
The series (5.13) for N is convergent whenever | {1/ (Gi+¢) | <1.

In Eq. (5.13) we have introduced the special function E,’(x). This function is closely related to the exponential
integral function [cf. Eqgs. (2.14), (2.17), and (2.21)7] and is defined by

E/(z)=— /w dit logt exp(—uxt), (5.14)
= (d/dn) Ea(%), (5.15)
e S (1) sl (s— et )T (— gyt LTV P RO e
=0, (aén—1) (n—1)!
where
YO (n) = (d/dn)y(n) (5.17)

and ¢ (n) is defined in Eq. (2.29).
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Note that only a finite number of terms in Eq. (5.6) for 8 have (s-+Az— As— 2us—u— 3) <0, and require the
representation of N given in Eq. (5.13).

Expansion (5.6) for 8 converges whenever | R/(R+@®.) | <1.

E.B
Insertion of the series expansion for 94,(xR) [Eq. (2.5)] into Eq. (2.43) for B focuses attention on terms of the

type
/ doc[(x‘1 ;—x)m *{f]x‘““?“*m[( 2 %)Aax‘lg] . (5.18)

Close inspection reveals that if the integrand of (5.18) is rewritten as (derivatives of f) X (derivatives of g) X
(powers of ), the only negative power of # which occurs is 7, in the special case A3=| A;— A; | and s=0. Thus,
with the aid of Eqs. (2.34) and (2.35), terms like (5.18) can be written®:

[ (7 5) s Bl etrsssn] (s 2 o 2y log(i)]]

> [A‘][Az](q)wz f dxst—m—"rﬁ[(%)Aw1E2A1+1E(§1+x)@u]]

#r=0 pg=0 Ml M2
(Ast2s—pr—pe—220)

d

A2—p2 —
X [(3;) [(f2—x)*22 log(fs—x) ]]-|— (—1) 4184, 4, sgds.0 2a—nl

(2A2+1)”
(2A,—1) 1
(2A+1) 1!

/ dz{ Eoaa[ (G1+2) R}

x| () T gl 1 (1) o e D [ (5 w2 g5 )

dx

The first term on the right term in Eq. (5.19) is essentially an N of the kind evaluated in Eq. (5.9). The integrands
of the 84,,14,-45 terms each contain only one logarithmic branch cut (the other has been differentiated into a
pole), and these integrals can be evaluated by manipulations which permit their contours to be closed in the
half-plane containing only poles. The result is

><x—l[<_‘?.>“‘+IE2A,+1[(hﬂ)mﬂ]. (5.19)

© Ay Ag A [ A

Blbe, Ri by 00 s £ 0 = (=)0 = 5 3 [ MM gyt
=0 p1=0 pg=0 L M1l M2
(Ag+H26—p1—p2—~2>0)

XRA3+28[(2A3+23+ 1) !'(28) ”]_IN(Aa-f- 2s—uwi—pe—2; A, &1, Ru; Agtps, &o, (Rz)
+ a5, a-22(—1) A‘( )RA36{22A2§ 5 B[ (G1H2) Q]850 4, (— 1)“( )RA“&““”‘“(R 24
2A3 A1A3

X {§  Beaga[ ($17F$2) uJ— oo (§181) Eangpa ($o®R1) }. - (5.20)
Equation (5.20) for B converges whenever | R/®; |<1.

F. C-Type Functions

Consider first Cs [Eq. (2.44)7. Since it is possible to deform the integration path so that always | x |>] a3 |,
we can use Eq. (2.20) to expand the Eyp 1] (fat=p+2) R ] in powers of {f.={3). We note that C; is always oper-
ated on by {«- &, ({s®1) » - -} which contains derivatives [see Eq. (2.37)] that make at least the first 24, terms of
the expansion vanish, and that, therefore, each surviving term in the expansion contains only a pole [see Eq.

8 For a more complete discussion of the arguments leading to thedss.a1-ael terms in Eq. (5.19), see H. J. Silverstone, J. Chem.
Phys. 46, 4377 (1967), Egs. (12)-(15).
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(2.18) ]. We use Egs. (2.34) and (2.35) to expand (x7'd/dx)%2x~, Eq. (2.7) for Ks,(xR), and
(x71d/dx) Ma T, (2®y) = R2AHY R/ dRy) MR — d/dGa ) Ry exp(— a®y) x2Ar2 (5.21)
which follows from Eq. (2.15), to obtain

d \&
{ooBn (@) + + <} Ca(Asy R; Ay, $afoy Rus Ag,y §2, Re) = { =+ Ky (GR1) = « + JRAAHR2A2(— R) As(R_l :ii) R
X i (— Q) Wbt (F [p) 2hrFetl— (£, — £ ) 2Arbs U T (2A,4-5+1) [T
=0

d \M d \¢ Ay TA, - Gattn) ']
X (G)q_l ‘—ia R — ga Rt Z (— 1) #2 f daxAr—pe—As—e—t
1 1 we=0 L M2 ]

Xexp[—2(R+0u) JRs 22 Epy g (So—2)Re).  (5.22)
We use the following identity:

/ dxe s R v mEy ool (Fo— %) Rz
= / dxe o+ {Rg 2522 E g, i (Fo— %) Re]— (R+-G1) 322 E gy [ (S~ ) (R+®R1) ]}

+ f dx+« (R+HR) A2 E gy (G~ ) (RA®RD) ] (5.23)

The contour for the second term on the right in Eq. (5.23) can be closed at — oo in the left hali-plane where the
integrand has no singularities. The only singularities enclosed by the contour of the first integral on the right in
Eq. (5.23) are poles at =0, and this integral can be evaluated by the residue theorem. The result is

d\As
{= - Bn (o)« + -} Ca(As, Ry Ag, Sazkd, Raj Ag, £, Ro) = {1+ 2 - Hn (HGa) «+ -} (— 1) AsG’q“‘“G’uz““R“(R“ Zﬁ) R

9> RPIFHL (Catgo) P4 — (o) Pt [ (281 454-1) T

8=0
X((R —1 _d._>AI(R -—1(_d->s(R -1 § [Az]( 1)#2l (At g+ A ! 4311
! d(Rl ! d(Rl ! po=0 L M2 ) [ ( LTk 3+ s ) ‘]

exp[ {2 (R+G) ]

d \ArtsatAsts43
Xexp[—{2(R+®1) :l(- d-)

{1
X{RAC) A2 E gy 1[G (R-Ru) J— R 272 E gy 1 (2R2) ] (5.24)

C: [Eq. (2.45)] and Cy! [Eq. (2.46)] are evaluated in an almost identical way, except that Fopa[ (G14+2)®Rq]
and (&1+x) 22t log($1+«), respectively, are expanded instead of Es4,41, and that in the Cy! case, Eq. (5.21) is not
used. The results are

d\M
{+ e B (§e®a) « « -} Gl (A3, R; Ay, $aztln, Ras gy £, Ba) = {1+ - Ky (§6Re) + + -} (— 1) A2(5’t12“‘(5’t22“213““(R—l (}}) R

s 8 2A1ts41 2ArFstL (S—l) 1! A2 Ay s L
X E) (— 1)L (Catg) 20— ($,—55) A+s+]m mzd][m](—l) [ (At pot Asts+3) 1]

d \ArteztAststsd
) eXp (5-2-R) {(RZ—AZ_“zEA2+uz+1 ({2(R2) ha R—ATMEA%;.”.H (§'2R) } 3 (525)

XEXp(—~§‘2R)(— o
{' * ",K")\l(g-b(ﬁl) e }62(A37 R: Ah g‘a:tfb, 0117 AQ; §‘27 (R2> = { ‘e 'SC)\l(g‘b(Rl) tee } {C2(A3y R, Al) §0:|:§_b> (Rly A2: .(2: (9-2)

+C21<A37 ‘R; Al) g-a:tf‘b, (Rl; A2) {2) 6%2) }. (5~26)
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Cs, C4, and C¢ are evaluated from the formulas derived above for Cs, Gy, and Cit, [Egs. (5.24)~(5.26) ], respec-

tively, via Egs. (2.48)-(2.50). The results are

{oo T (Eo®R) oo F{ oo 2 Kng($a®e) » « + JCulAs, R; A, Sakls, Ru; Ay So=fa, Ro)

Az
={ce B0 (Co®r) ve oo Hns(FaRe) e oo} (— 1)A36112A1+16{2“2R“3(R"1 (}%) R1

X 3 Gttt (g )b (p— o)t (2An s+ 1) (1
8=0

X (‘Rl“l —)M@l’l(i)s&r‘ ‘:;_: [ﬁ:](— Dl (ArH - Asts4-3) 1T

d
GH d®,
d
X exp[—¢.(R+®u) ](— .

)A1+#2+Az+s+z

exp[{e(R+G1) ]

X ((RA-G) A { Byg g a[ (¢oH80) (RAB1) I— B gppal Go—$0) (RFH-60) ]}
=@ Fpopunral (Co- £ ) Qo] — Eporuens[ Ge—Fa)®2D}),  (5.27)
{ . ’5C>\1(§'b(ﬁ1) b } { b 'K)g(g'dmﬂ A }C4I(A37 R: Al; g‘aig‘b, (Rl; Aﬁ, g-c:|:§'d, (RZ)

={+ e B (o) o o Ho o - Hna(Sa®e) -«

(= 1) bR 2 2ae RAS( R _d_)Aa R
dR

w_s s+l — 2181_(..{____.1&‘\2 Az_uz
X g( 1)2[(§at o) 2hrteti— (£ — () 2Artetl] ZArsr 3:‘0[”2]( 1) e (At potAsts+3) [

d >A1+n2+As+8+3
as.

Xexp(-i‘ck)(—

exp(£eR) Q527 {Epyppna[ (fot£a) Rel— Brsrinpal e o) Ro]}

_R_Az—ﬂz{EAﬁpﬁ:[[(g-o_*_?d)R]_EA%#ﬁl[(g‘c-g-d) R1D), (5.28)

{' ° 'gc)\l(g-bml) cer }(74(A3: R: AI: fa:hfb, (RI’ A2; g‘c:&{d: CH'?)

= [+ o Bn(§o®1) « + 1 {CaAs, R; Ay, Ca=fo, Raj Ag, Sezt=ta, Re)

+Cit (As, R; Ay, faztbo, Ru; Ag, ofa, Re) ). (5.29)

In Egs. (5.27)—(5.29) we have used the presence of derivatives in {+++3,(¢a®s) - -+ } [see Eq. (2.37) ] to express
what were combinations of Ej,,.p1’s in the Cp formulas as combinations of Epyih,44’s in the Cy formulas. All C-
type function formulas converge for all values of R, ®;, and R..

V1. SUMMARY

The four-center integral of 75! with Slater-type
atomic orbitals has been evaluated analytically.
Equations (3.3) and (3.4) express the integral as an
infinite sum over spherical harmonics of the internuclear
angles multiplied by the ‘“radial” integral, I.ga"®d.
Equations (3.7)-(3.11) decompose I.ga™? into four
terms: I®, J® I® and I¥, Equations (4.8)-(4.13),
(4.19), (4.20), (4.24), (4.25), (4.27), (4.29)-(4.32),
and (4.36)—(4.38) express these IV in terms of special
functions defined in Eq. (2.39)-(2.50). Finally, Egs.
(5.3)-(5.6), (5.9), (5.13), (5.20), and (5.24)-(5.29)
represent the special functions as convergent infinite
expansions involving various versions of the exponen-

tial-type integral [Eqgs. (2.14), (2.16)-(2.18), and
(5.14)7]. The formulas given are valid for all integer-
n-type Slater-type orbitals (r>Il4+1) with general
values of the ! and m quantum numbers and general
values for the orbital exponents. In addition, the
formulas are valid for arbitrary nuclear geometry,
provided that all four centers are distinct.

This paper completes a first goal of the series—the
development of purely analytical formulas for two-
electron multicenter integrals of 75! with Slater-type
atomic orbitals. Subsequent work will deal with
asymptotic expansions for large internuclear distances,
recursion formulas, and the practical details of obtain-
ing numbers.






